skip to main content


Search for: All records

Creators/Authors contains: "Gordon, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia,Sulcia, andOphiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.

     
    more » « less
  2. Abstract

    Rapid species radiations present difficulties for phylogenetic reconstruction due to lack of phylogenetic information and processes such as deep coalescence/incomplete lineage sorting and hybridization. Phylogenomic data can overcome some of these difficulties. In this study, we use anchored hybrid enrichment (AHE) nuclear phylogenomic data and mitochondrial genomes recovered from AHE bycatch with several concatenated and coalescent approaches to reconstruct the poorly resolved radiation of the New Zealand cicada species in the generaKikihiaDugdale andMaoricicadaDugdale. Compared with previous studies using only three to five Sanger‐sequenced genes, we find increased resolution across our phylogenies, but several branches remain unresolved due to topological conflict among genes. Some nodes that are strongly supported by traditional support measures like bootstraps and posterior probabilities still show significant gene and site concordance conflict. In addition, we find strong mito‐nuclear discordance; likely the result of interspecific hybridization events in the evolutionary history ofKikihiaandMaoricicada.

     
    more » « less
  3. null (Ed.)
    Despite many bioinformatic solutions for analyzing sequencing data, few options exist for targeted sequence retrieval from whole genomic sequencing (WGS) data with the ultimate goal of generating a phylogeny. Available tools especially struggle at deep phylogenetic levels and necessitate amino-acid space searches, which may increase rates of false positive results. Many tools are also difficult to install and may lack adequate user resources. Here, we describe a program that uses freely available similarity search tools to find homologs in assembled WGS data with unparalleled freedom to modify parameters. We evaluate its performance compared to other commonly used bioinformatics tools on two divergent insect species (>200 My) for which annotated genomes exist, and on one large set each of highly conserved and more variable loci. Our software is capable of retrieving orthologs from well-curated or unannotated, low or high depth shotgun, and target capture assemblies as well or better than other software as assessed by recovering the most genes with maximal coverage and with a low rate of false positives throughout all datasets. When assessing this combination of criteria, ALiBaSeq is frequently the best evaluated tool for gathering the most comprehensive and accurate phylogenetic alignments on all types of data tested. The software (implemented in Python), tutorials, and manual are freely available at https://github.com/AlexKnyshov/alibaseq . 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Abstract Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America. 
    more » « less
  6. Abstract

    The hemipteran suborder Auchenorrhyncha is a highly diverse, ecologically and agriculturally important group of primarily phytophagous insects which has been a source of phylogenetic contention for many years. Here, we have used transcriptome sequencing to assemble 2139 orthologues from 84 auchenorrhynchan species representing 27 families; this is the largest and most taxonomically comprehensive phylogenetic dataset for this group to date. We used both maximum likelihood and multispecies coalescent analyses to reconstruct the evolutionary history in this group using amino acid, nucleotide, and degeneracy‐coded nucleotide orthologue data. Although many relationships at the superfamily level were consistent between analyses, several differing, highly supported topologies were recovered using different datasets and reconstruction methods, most notably the differential placement of Cercopoidea as sister to either Cicadoidea or Membracoidea. To further interrogate the recovered topologies, we explored the contribution of genes as partitioned by third‐codon‐position guanine‐cytosine (GC) content and heterogeneity. We found consistent support for several relationships, including Cercopoidea + Cicadoidea, most often in genes that would be expected to be enriched for the true species tree if recombination‐based dynamics in GC content have contributed to the observed GC heterogeneity. Our results provide a generally well‐supported framework for future studies of auchenorrhynchan phylogeny and suggest that transcriptome sequencing is likely to be a fruitful source of phylogenetic data for resolving its clades. However, we caution that future work should account for the potential effects of GC content heterogeneity on relationships recovered in this group.

     
    more » « less